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Abstract

A full account is given of the procedure used by the authors to construct

an SO(10) supersymmetric grand uni�ed model of the fermion mass matri-

ces. Various features of the model which gives remarkably accurate results

for the quark and lepton masses and mixings were presented earlier in sepa-

rate publications. The construction of the matrices is �rst discussed in the

framework of e�ective operators, from which one naturally obtains the max-

imal �� � �� mixing, while the small angle or maximal mixing solutions for

the solar neutrinos depend upon the nature of the Majorana matrix. A set

of Higgs and fermion super�elds is then introduced from which the Higgs

and Yukawa superpotentials uniquely give the structure of the mass matri-

ces previously obtained. The right-handed Majorana matrix arises from one

Higgs �eld coupling to several pairs of superheavy conjugate neutrino singlets.

For the simple version considered, 10 input parameters accurately yield the

20 masses and mixings of the quarks and leptons, and the 3 masses of the

right-handed neutrinos.
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I. INTRODUCTION

In several recent papers [1-4] we have developed a highly predictive model of quark and

lepton masses based on the grand uni�ed group SO(10). This model grew out of our attempt

[1] to construct a realistic grand uni�ed theory (GUT) in which SO(10) was broken down

to the standard model in the simplest possible, or \minimal" way [5]. In this model there

emerged a new mechanism based on certain well-known features of SU(5) for explaining

the large mixing between the mu and tau neutrinos that is seen at SuperKamiokande [6].

In [1,2] we gave the structure of the quark and lepton mass matrices for the second and

third families, treating the �rst family as massless. In [3], it was shown how to extend the

model to include the �rst family, which leads to several interesting predictions. In [4], it was

observed that the mixing of the electron neutrino very naturally falls either within the range

0:004 � sin2 2�e� � 0:008, corresponding to the small angle MSW solution [7] of the solar

neutrino problem, or very near to the value sin2 �e� = 1, corresponding to what is called

\bimaximal mixing".

In this paper we present the model in fuller detail, especially in regard to neutrino

phenomenology, and to the structure of the Higgs sector, Yukawa interactions, and 
avor

symmetries that underlie the quark and lepton mass matrices.

The paper is organized as follows. In Section II we discuss in general terms, that is

apart from a particular model, our mechanism for explaining the large mixing of �� and

�� . In Section III, we explain what we mean by a \minimal" SO(10) breaking scheme, and

show how such minimal breaking and the requirements of simplicity lead one naturally to a

certain form for the mass terms of the heavier two families of quarks and leptons. We then

observe that this form realizes the general mechanism for large �� � �� mixing described in

the previous Section. It is important to emphasize that this mechanism emerged not from

an attempt to explain neutrino phenomenology, but from other considerations entirely, in

particular the attempt to simplify the Higgs structure of SO(10). It is most interesting

that the same mechanism has also independently been found by other groups attempting to

make sense of neutrino phenomenology. In Section IV, it will be explained how this model

is best extended to the �rst family of quarks and leptons, and how this gives rise to several

distinctive predictions. Accurate analytic expressions for the predictions at the GUT scale

will be presented. In Section V, the neutrino sector will be examined in detail. It will be

seen how either the small-angle MSW solution of the solar neutrino problem or bimaximal

mixing can result with equal simplicity. Finally, in Section VI, a concrete model, including

all the details of 
avor symmetries and of the Higgs and Yukawa superpotentials, will be

presented, showing that the basic scheme is technically natural.

II. MECHANISM FOR LARGE �� � �� MIXING

Before explaining our mechanism, it will be helpful to explain why the observed large

mixing of ��, presumably with �� , has been a theoretical puzzle. The basic reason is simple:

the mixing that is seen between the quarks of the second and third families is described

by a small mixing angle, namely Vcb �= 0:04, and therefore it was expected that the mixing

between the second and third family of leptons would also be small.
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The grounds for this expectation were twofold. First, there is the empirical fact that

the masses of the quarks and leptons exhibit roughly similar \hierarchical" patterns, and

therefore it was natural to assume that their mixing angles would be similar also. Second,

the most promising theoretical approaches to understanding the pattern of quark and lepton

masses, namely grand uni�cation and 
avor symmetry, tend to treat quarks and leptons in

similar ways. For instance, small quark mixing angles might suggest an underlying funda-

mental \family symmetry" that is weakly broken, in which case the lepton mixings might

be expected also to be small. And in grand uni�cation based on SO(10) there is a close

connection between the quark and lepton mass matrices.

There are actually two puzzles associated with the mixing of the second and third fam-

ilies: First, why is the lepton mixing jU�3j � 0:7 so large? And, second, why is the quark

mixing Vcb �= 0:04 so small? What we mean by saying that these are distinct puzzles is that

they are both unexpected within the most commonly assumed framework for explaining

quark and lepton masses, the Weinberg-Wilczek-Zee-Fritzsch (WWZF) idea [8].

The WWZF idea was that the Cabibbo angle could be understood if the mass matrices

of the �rst and second families of quarks had the following form:

Lmass = (uR; cR)

 
0 b

b a

! 
uL
cL

!
+ (dR; sR)

 
0 b0

b0 a0

! 
dL
sL

!
: (1)

This gives jmd=msj �= jb0=a0j2, jmu=mcj �= jb=aj2, and Vus �= b0=a0� b=a, and thus the famous

relation

Vus �=
q
md=ms � ei�

q
mu=mc: (2)

Since jVusj �= 0:22,
q
md=ms

�= 0:22, and
q
mu=mc

�= 0:07, this relation is satis�ed for

� � ��=2. If we apply the same idea to the leptons of the �rst two families we get

Ue2
�=
q
me=m� � ei�

q
m�1

=m�2
: (3)

The second term on the right is not known, but if it is assumed to be small one has the

rough prediction that Ue2 �
q
me=m�

�= 0:07. This could be consistent with the small angle

MSW solution of the solar neutrino problem, which requires that Ue2 � 0:04. Thus the

WWZF idea appears to work well where it was originally applied, namely to the �rst and

second families.

Fritzsch [9] later extended this idea to explain the mixing of the third family. If a WWZF

form is assumed to hold for the second and third family, i.e., if one takes (u; c) �! (c; t)

and (d; s) �! (s; b) in Eq. (1), one obtains

Vcb �=
q
ms=mb � ei


q
mc=mt (4)

and

U�3
�=
q
m�=m� � ei�

q
m�2

=m�3
: (5)

Since
q
ms=mb

�= 0:14, and
q
mc=mt

�= 0:04, one sees that the observed value of Vcb �= 0:04

is too small by a factor of three or so. Assuming that the neutrino mass ratio in Eq.
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(5) is small, and given that
q
m�=m�

�= 0:24, one sees that the nearly maximal value of

U�3 � 1=
p
2 �= 0:7 that is observed is too large by a factor of three or so.

These Eqs. (2-5) are based on the assumption of a hierarchical and symmetric form

for the mass matrices. A key feature in our mechanism for understanding the large mixing

of the tau neutrino is that it involves highly asymmetric mass matrices. As we shall see,

the assumption of asymmetric mass matrices naturally explains why U�3 is larger than the

Fritzsch value and Vcb is smaller than the Fritzsch value by approximately the same factor.

Consider, a toy model with SU(5) symmetry, which has a set of Yukawa terms of the

following form: �33(53103)5H+�23(52103)5H+�32(53102)5H, with �32 � �23 � �33 and the

subscript H denoting a Higgs representation. These terms yield the following mass matrices

for the second and third families of down quarks and charged leptons:

(d2R; d3R)

 
0 �

� 1

! 
d2L
d3L

!
MD + (l2R; l3R)

 
0 �

� 1

! 
l2L
l3L

!
MD; (6)

with � � � � 1. Here we have labelled the fermions with a family index, instead of

the names s, b, �, and � , since the mass matrices in this case are far from diagonal. A

crucial point to notice is that the matrix for the leptons, which we will denote by L, is the

transpose of the matrix for the down quarks, which we will denote by D. This is a feature

of minimal SU(5). It arises from the fact that the 5 representation of fermions contains

the left-handed leptons, lL, and the charge conjugate of the right-handed down-quarks, dR,

while the 10 representation of fermions contains the charge conjugate of the right-handed

leptons, lR, and the left-handed down-quarks, dL. Thus, SU(5) relates D to L, but only up

to a left-right transposition: D = LT .

The transposition feature of SU(5) uni�cation appearing in Eq. (6) results in the large

element, �, of L producing an O(1) mixing of l2L with l3L for the leptons, while in D for

the quarks it produces a large mixing of the right-handed �elds d2R and d3R. The mismatch

between the large l2L� l3L mixing and the �2L� �3L mixing, which is small (as will soon be

seen), leads to a large U�3 mixing element. But the right-handed mixings of the quarks are

not observable through standard model physics. What matters is the left-handed mixing of

d2L with d3L, which contributes to Vcb, and is controlled by the small parameter �.

The common statement that grand uni�cation relates quark and lepton mixing angles,

and thus Vcb to U�3, is very misleading. What is really true in general is that grand uni�-

cation relates the mixing of quarks of one handedness to the mixing of leptons of the other

handedness. Thus Vcb and U�3 need not be directly related to each other. Of course, if

the mass matrices are symmetric, as has almost always been assumed, the left-handed and

right-handed mixings are the same, and hence Vcb is directly related to U�3. The most nat-

ural interpretation, then, of the experimental discovery that jU�3j � jVcbj is that the mass

matrices are highly asymmetric. This is the essential point �rst made in [10].

Not only does a highly asymmetric, or, as we will call it, \lopsided," form of the mass

matrices explain the di�erence between the size of U�3 and Vcb, but it also explains the fact,

noted above, that U�3 is larger than the Fritzsch value and Vcb is smaller than the Fritzsch

value by about the same factor. The point is that the product of the two o�-diagonal

elements, � and �, is controlled by the fermion mass ratio. As is evident from Eq. (6),

ms=mb
�= ��

1+�2
� ��. That means that the Fritzsch prediction for the mixing of dL and sL,
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which is
q
ms=mb, goes approximately as

p
��. That shows that the Fritzsch prediction for

the mixing angles is roughly the geometric mean between the true value of U�3 � � and

the true value of Vcb � �. In other words, in our hypothesis of lopsided mass matrices, the

surprising largeness of U�3 and the surprising smallness of Vcb are two sides of the same coin.

Another important feature of this mechanism should be emphasized. Almost all pub-

lished explanations of the largeness of the �� � �� mixing trace it to some special feature or

form of the neutrino mass matrix. Perhaps this is due to the purely linguistic fact that we

talk about \neutrino mixing angles". But they could just as well be called the \charged-

lepton mixing angles". They are really the angles expressing the mismatch between the

neutrino mass eigenstates and the charged lepton mass eigenstates, just as the CKM angles

are the mismatch between the up and down quark eigenstates. In our mechanism, the large

value of U�3 is traceable to a peculiarity of the charged lepton mass matrix L, namely, having

a large o�-diagonal entry �. As we shall see in the next Section, having such a large entry

helps to explain several other features of the quark and lepton mass spectrum.

To sum up, the mechanism for explaining large ����� mixing proposed in [1{3] has three

salient features: (1) the largeness of this mixing is due to the charged lepton mass matrix,

which is (2) highly asymmetric, and which is (3) related to the transpose of the down quark

mass matrix by SU(5).

In the next Section we will see how a model with precisely these features arises very

naturally in SO(10) from very di�erent considerations.

III. FERMION MASS MATRICES IN MINIMAL SCHEMES OF SO(10)

BREAKING

The model that we shall examine in this paper emerged originally from our attempt to

construct a realistic model based on SO(10) [11] in which SO(10) is broken to the standard

model group, GSM = SU(3)c � SU(2)L � U(1)Y in the simplest possible way. We shall

therefore start by explaining what we mean by minimal SO(10) breaking.

Since SO(10) is a rank 5 group, it requires for its breakdown to GSM at least two Higgs

�elds. One Higgs �eld is needed to break the rank of the group to 4, but this generally

leaves an unbroken SU(5). The second Higgs �eld is needed to break SU(5) down to GSM .

The two breakings can occur in either sequence depending upon which Higgs �eld has the

larger VEV and e�ects the �rst breaking.

Whatever Higgs �eld gives superlarge mass to the right-handed neutrinos, as required

for the standard seesaw explanation of the lightness of the left-handed neutrinos, will also

break SO(10) down to SU(5), and thus the rank to 4. There are two simple choices for this

Higgs �eld: either an antisymmetric �ve-index tensor 126 or a spinor 16. In either case, one

also expects a Higgs �eld in the conjugate representation, 126 or 16, to go along with it. A

nice feature of the 126 is that this tensorial representation leaves unbroken a Z2 subgroup

of the center of SO(10) that acts as an automatic matter parity, whereas if a spinor Higgs is

introduced, then matter parity is not automatic. On the other hand, to introduce 126+126

is to introduce quite large representations that tend to make the uni�ed gauge coupling go

non-perturbative below the Planck scale, and that may be hard to obtain from superstring

theory. In any event, it would seem that the use of a spinor-antispinor pair, 16+16, is more
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economical. Thus we assume that the rank of SO(10) is broken at the uni�cation scale and

the right-handed neutrinos get mass from one such spinor-antispinor pair of Higgs �elds.

To break the group the rest of the way to GSM requires the existence of Higgs �elds in

the adjoint representation 45 and/or in the symmetric two-index tensor representation 54.

Most published realistic SO(10) models have several of both kinds of multiplets. However,

it has been shown that it is possible to break SO(10) to GSM with only a single adjoint

Higgs and no larger representations [5].

This, then, is what we call the \minimal breaking scheme for SO(10)": The breaking of

SO(10) to GSM is accomplished by the expectation values of a set of Higgs �elds consisting

of 45H + 16H + 16H , with the model containing no multiplets larger than the single 45.

There, of course, have to be other Higgs �elds to break the SU(2)L � U(1)Y group of the

electroweak interactions.

This minimality assumption is restrictive enough that it is possible to say in which

direction the expectation values of these �elds point. This can be done by considering the

problem of doublet-triplet splitting, whereby the colored partners of the weak-doublet Higgs

�elds of the standard model become superheavy while the weak-scale masses of the doublets

themselves are preserved. In SO(10) the only known way of doing this in a technically

natural manner is the Dimopoulos-Wilczek or \missing VEV" mechanism [12]. The idea

is that if an adjoint Higgs �eld that has an expectation value proportional to the SO(10)

generator B�L couples to Higgs �elds in the vector representation, it will make their color-

triplet components heavy (since they have B �L = �2=3) while leaving their weak-doublet
components massless (since they have B�L = 0). The needed coupling is simply of the form

101H45H102H. Of course, the expectation value of the adjoint, by virtue of the de�nition

of the adjoint representation, is necessarily a linear combination of generators of the group.

B � L is one of the SO(10) generators that is picked out by simple forms of the Higgs

superpotential for the adjoint multiplet. It should be noted that there is another version

of the missing VEV mechanism that works in SO(10), in which the VEV of the adjoint is

proportional to the generator I3R of the SU(2)R subgroup of SO(10) [13]. However, that

version is signi�cantly more complicated. Therefore, simplicity dictates the choice that

h45Hi / B � L: (7)

Since the assumption of a minimal SO(10) breaking scheme included the supposition that

only one adjoint exists in the model, no adjoint exists except the one that points in the

B � L direction. As we shall see, this puts an important limitation on the possibilities

for constructing realistic mass matrices for the quarks and leptons. The assumption of a

minimal SO(10) breaking scheme thus acts as an important guide in searching for good

models.

The simplest possible terms that would give mass to quarks and leptons in SO(10) would

be �ij16i16j10H, where the subscripts i and j are family indices. This would lead to four

proportional Dirac mass matrices for the up-quarks (U), down quarks (D), charged leptons

(L), and neutrinos (N). In fact one would have D = L / U = N . Moreover, all these

matrices would be symmetric, which is why one can write D = L instead of D = LT as in

minimal SU(5). Some of the predictions that follow from these relations are good, notably

the famous prediction m0
b
= m0

�
, where the superscript zero stands for quantities evaluated

6



at the uni�cation scale MG. However, D = L also predicts that m0
s
= m0

�
and m0

d
= m0

e
.

Empirically, one �nds instead that m0
s
' 1

3
m0

�
and m0

d
' 3m0

e
. These factors of three are

called the Georgi-Jarlskog factors [14]. The simplest possible SO(10) Yukawa terms also

predict that all the CKM angles vanish, since U / D. While not exactly true, this is at

least a good zeroth order relation, since the CKM angles are all small compared to unity.

By contrast, in SU(5) the matrices D and U are not related by the uni�ed symmetry and

so the CKM angles are unconstrained. The smallness of the CKM angles can be regarded,

therefore, as evidence for SO(10). On the other hand, the proportionality of D and U in

SO(10) also predicts that m0
c
=m0

t
= m0

s
=m0

b
, which fails badly by over an order of magnitude.

What one can conclude is that a way of going beyond the simplest possible SO(10)

Yukawa schememust be found which preserves some of its predictions while breaking others.

One way to do this involves using larger representations to break the electroweak interactions.

For instance, in the original Georgi-Jarlskog model, a 45 multiplet of SU(5) (not to be

confused with the adjoint of SO(10)) participates in breaking SU(2)L � U(1)Y . In the

context of SO(10), this 45 is contained in a 126, which is inconsistent with our minimality

assumptions. More economical is to assume that the Higgs �elds that break SO(10) at the

uni�cation scale, i.e., the 45H+16H+16H , couple to quarks and leptons and thus introduce

the e�ects of that SO(10) breaking into the quark and lepton mass relations. This is the

assumption we make.

To describe the third family it is simplest to assume the minimalYukawa term 16316310H
as pictured in Fig. 1(a). By itself, this would make all the mass matrices have the form

0
B@ 0 0 0

0 0 0

0 0 1

1
CA : (8)

That would give the following predictions, all of which are at least good zeroth approxima-

tions to reality: m0
b
= m0

�
, Vcb = 0, and m1=m3 = m2=m3 = 0, where mi is a mass of a

fermion of the ith family. Note that these are just the \good" SO(10) predictions mentioned

above.

The second family presents more of a challenge. The main issue is how to get the Georgi-

Jarlskog factor of 3 between m0
�
and m0

s
. Breaking of SU(5) must be involved, since the bad

relation m0
s
= m0

�
arises already at the SU(5) level. The only �eld that breaks SU(5) in the

framework of minimal SO(10) breaking is the adjoint, 45H . Since h45Hi / B � L, and the

B�L of leptons is �3 times that of quarks, this �eld has the possibility of giving the needed

Georgi-Jarlskog factor. Thus one must seek an e�ective Yukawa term that involves the 45H.

The simplest such term [15], in the sense of the term of lowest dimension, is of the form

(16i16j)10H45H=MG. Moreover, this term can arise in a simple way by the integration out

of a 16+ 16 family plus antifamily at the uni�cation scale, as shown in Fig. 1(b).

There are actually two ways to contract the SO(10) indices of such a term: the product

(16i16j) can be contracted symmetrically or antisymmetrically. It is easy to show that if

h45i / B�L, only the antisymmetric contraction contributes to the quark and lepton mass

matrices. (The reason is simple. If the VEV of the adjoint is proportional to a generator

Q, then the symmetric/antisymmetric contractions give contributions to fermion masses

that go as Q(f) � Q(f). Since B � L of an antifermion is minus that of the fermion, the
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contribution cancels for the symmetric contraction.) Thus, one need only consider the 
avor-

antisymmetric term, which means only ij = 23 and not ij = 22, or 33. Consequently, the

only operator of interest is (162163)10H45H which, together with the operator 16316310H,

gives

U =

0
B@ 0 0 0

0 0 �=3

0 ��=3 1

1
CAMU ; D =

0
B@ 0 0 0

0 0 �=3

0 ��=3 1

1
CAMD;

N =

0
B@ 0 0 0

0 0 ��
0 � 1

1
CAMU ; L =

0
B@ 0 0 0

0 0 ��
0 � 1

1
CAMD:

(9)

The desired factor of 3 has been achieved between leptons and quarks, due to the gen-

erator B � L to which the adjoint VEV is proportional. One also can see that the � entries

are 
avor antisymmetric for reasons already explained. As they stand, these forms of the

matrices are inadequate to explain even the features of the second and third families of

fermions. There are three inadequacies. (1) The factor of 3 comes in squared between the

mass of the leptons and quarks of the second family. The reason is that, for � small due

to the mass hierarchy between families, the second eigenvalue of L is given by the seesaw

formula m0
�
�= �2MD, while the second eigenvalue of D is given by m0

s
�= (�=3)2MD. (2) The

matrices D and U are still exactly proportional. This is a consequence of the fact that the

generator B � L does not distinguish up and down quarks. Therefore, the CKM angle Vcb
still exactly vanishes. (3) Because D and U are exactly proportional, one still has the bad

prediction m0
c
=m0

t
= m0

s
=m0

b
.

It is clear that the breaking of SO(10) due to the adjoint cannot cure all of these problems,

since B�L does not distinguish D from U . Thus the breaking of SO(10) done by 16H+16H
must come into play. As we shall now show, a single simple operator exists, which involves

one of these spinor Higgs and cures at one stroke all three of the problems we have identi�ed.

The lowest dimension e�ective Yukawa operators that involve the spinor Higgs �elds are

quartic in spinors. Consider, therefore, operators of the form 16i16j16
0
H16H=MG. The

16H is the spinor Higgs �eld that breaks SO(10) at MG down to SU(5). The 160H is a

spinor Higgs that has a weak-scale VEV that breaks SU(2)L � U(1)Y . In principle, these

two spinors could be the same �eld. However, if they were, it would mean that they had

to be contracted symmetrically by Bose statistics, which in turn would mean that 16i and

16j would also have to be contracted symmetrically. A careful examination shows that

the resulting 
avor-symmetric contributions to the mass matrices do not lead to realistic

forms, though it is possible to achieve realistic mass matrices by adding yet another Yukawa

operator, as in the interesting model of Babu, Pati, and Wilczek [16]. Therefore 160
H
must

be a distinct �eld. As will be seen later, introducing this 160
H
involves no loss of economy,

since it allows a very elegant explanation of the largeness of the ratio mt=mb without making

tan � large.

There are still several operators of this type to be considered: the family indices can

take the values ij = 33; 22; 23, or 32, and there are three ways to contract the four spinors

to make an SO(10) singlet. Here again, one must examine the various cases to see which
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gives the most realistic mass matrices. As it turns out, there is one operator that is much

superior to the others, in the sense that it much more cleanly and simply �ts the data. It is

of the form [16216H][16316
0
H], where [:::] means that the spinors inside are contracted into

a 10. This can arise very simply by integrating out a 10 of fermions, as shown in Fig. 1(c).

Let us write the resulting mass operator in SU(5) language. Denote by p(q) a pmultiplet

of SU(5) that is contained in a qmultiplet of SO(10). The VEV of 16H lies, of course, in the

1(16) direction, while the VEV of 160
H
that breaks the weak interactions lies in the 5(16)

direction. Therefore, the resulting mass term is of the form [5(162)1(16H)][10(163)5(16
0
H
)],

which in SU(5) terms gives e�ectively the operator (52103)5H. Note that this has the same

form as the SU(5) operator discussed in the last Section, which gave the � entries in Eq.

(6). The result, then, of including this operator [2] is to make the mass matrices take the

form:

U =

0
B@ 0 0 0

0 0 �=3

0 ��=3 1

1
CAMU ; D =

0
B@ 0 0 0

0 0 � + �=3

0 ��=3 1

1
CAMD;

N =

0
B@
0 0 0

0 0 ��
0 � 1

1
CAMU ; L =

0
B@
0 0 0

0 0 ��
0 � + � 1

1
CAMD

: (10)

The new term has given the entries we call �. Note that these lopsided entries appear only

in D and L. The reason is simply that the 160
H
contains a 5 of SU(5) but no 5.

It is easy to see that the new term with � � � cures at once all three of the problems we

identi�ed with the forms given in Eq. (9): (1) Instead of m0
�
�= �2MD and m0

s
�= (�=3)2MD,

one has approximately that m0
�
/ (�)(� + �) �= �� and m0

s
/ (�=3)(� + �=3) �= ��=3. More

exact expressions will be given later. Thus the desired Georgi-Jarlskog factor of 1/3 is

obtained, instead of 1/9. The � entry has dominated over one of the factors of �=3 and thus

prevented the factor of 1/3 from coming in squared.

(2) The � entry comes into D but not U , and thus breaks the proportionality of the two

matrices. As a result, Vcb no longer vanishes, but is given approximately by (�=3)( �
2

�2+1
).

Note that this is of the same order in � as ms=mb
�= (�=3)( �

�2+1
), rather than

q
ms=mb as is

the case with Fritzsch forms, and accords much better with the actual experimental values.

(3) The fact that � breaks the proportionality of U and D also means that the bad

relation m0
c
=m0

t
= m0

s
=m0

b
is broken. Speci�cally,m0

s
=m0

b
is of order �, while m0

c
=m0

t
is still of

order �2 and therefore much smaller. This also accords well with the experimental numbers.

In fact, as we shall see, if one uses Vcb and m�=m� to �x the parameters � and �, one �nds

that mc(1 GeV) is predicted to be in agreement with the experimentally determined value

of 1:27� 0:1 GeV. It should also be noted that the prediction m0
b
= m0

�
is only very slightly

a�ected by the addition of the � term, both m0
b
and m0

�
being given to leading order in � byp

�2 + 1MD.

The economy of the above mass matrix forms is seen in the fact that �ve quantities (Vcb,

m�=m� , ms=mb, mc=mt, and m�=mb) are successfully �t with only the two parameters � and

�. No other published form succeeds in accurately reproducing the masses and mixing of the

9



the heavier two families with so few parameters. The predictions and �ts will be discussed

in detail in Section IV.

We see that the matrices in Eq. (10) were arrived at by a process of reasoning that had

nothing to do with the question of neutrino mass but rather with an attempt to get realistic

masses and mixings for the quarks and charged leptons using as simple a Higgs sector as

possible in SO(10). But what has emerged is a structure with precisely the three critical

features identi�ed in the last Section as giving a simple explanation of the large mixing of ��
and �� . In fact, a �t of Vcb and m�=m� gives � �= 1:8 and � �= 0:14. Consequently, as can be

seen directly from Eq. (10), the angle ��� = sin�1 U�3 = tan�1 ��O(�) = 60��O(8�). This

is quite consistent with what is observed. We will look more carefully at these predictions

later.

To summarize, with two parameters, � and �, four mass ratios and two mixing angles

are satisfactorily accounted for, if we include U�3. No greater economy could be hoped

for in explaining the spectrum of the heavy two families. Moreover, as we shall see in the

next Section, the forms in Eq. (10) can be extended to include the �rst family with equal

economy: the introduction of two new parameters (one of which is complex) will nicely

account for seven quantities pertaining to the �rst family.

Before explaining how the model is extended to the �rst family we will expand on a

couple of points made earlier. First, we said that the introduction of the 160
H

allows a

simple explanation [1,16] of why mt � mb that does not require a tan � � 1. The point is

that the Higgs doublet of the MSSM that is often called HU is purely contained in the 10H
that couples to 163163 and gives rise to the \1" entry in the mass matrices of Eq. (10).

However, the Higgs doublet of the MSSM that is called HD does not come purely from 10H.

Rather it is a mixture of doublets in 10H and 160
H
, since they both contain 5's of SU(5).

Thus we may write

HU = H(10H);

HD = H(10H) cos 
 +H(160
H
) sin 
;

(11)

where 
 is some mixing angle that depends on the parameters of the Higgs sector. Since

the 33 elements of the mass matrices all arise purely from the coupling of the 10H , the

parameters we called MU and MD in Eq. (10) are given by

MU = �33hHU i;

MD = �33hHDi cos 
:
(12)

leading to the ratio MU=MD = hHU i=(hHDi cos 
) = tan �= cos 
, where tan � is de�ned to

be the ratio of the Higgs VEV hHU i giving mass to the top quark to the Higgs VEV hHDi
giving mass to the bottom quark. Hence

m0
t
=m0

b
�= (�2 + 1)�1=2(tan �= cos 
) (13)

The point is simply that the large ratio of the top to bottom masses could be the result of

cos 
 being small rather than tan� being large. In fact, since we do not know anything a

10



priori about the angle 
, we cannot say whether tan � is large or small. It should be noted

that if one assumes that HD lies mostly in the 160
H
(so that cos 
 � 1), it would explain

why the parameter � is large since it comes from a coupling to 160
H
, and also explain why

tan � might be small.

A second point we wish to underline here has to do with the reasonableness of asymmetric

mass matrices. In many models it is assumed that all the mass matrices are symmetric.

However, this is not something that is called for by the group theory of grand uni�cation.

It is true that with the minimal Yukawa terms SU(5) gives a symmetric U . But even with

minimal Yukawa terms SU(5) does not predict any symmetry of the D and L matrices.

And in SO(10), as we have seen, once one introduces the e�ects of SO(10) breaking into

the Yukawa sector, as one virtually must, one easily obtains e�ective Yukawa terms that are

asymmetric. Fig. 1(c) shows that very simple diagrams can give terms that are lopsided,

in the sense that they contribute only above or below the diagonal. From the point of view

of the fundamental grand uni�ed theory, then, lopsided terms are as natural as symmetric

ones. The preference for symmetric terms has been the result not of examining what kinds

of terms are obtained in a simple way in uni�cation, but rather from the desire to reduce the

number of parameters at the level of mass matrices with the aim of making models which

are highly predictive. However, putting oneself in the straightjacket of symmetric matrices

makes it hard to get a good �t to all the quark and lepton masses and mixings. It turns

out, as we have seen, and will see further below, that allowing asymmetric matrices makes

possible a model which gives both a very good �t to the data and is actually much more

predictive than most models which assume symmetric matrices.

IV. EXTENSION TO THE FIRST FAMILY

In arriving at the form of the mass matrices for the heavy two families we were limited in

the choices that were possible by the assumption wemade about the simplicity of the SO(10)-

breaking sector. In extending to the �rst family we are not quite so limited. Nevertheless,

the number of simple possibilities is not very large. There are several discrete choices: Should

the contributions to the �rst row and column of the mass matrices be 
avor symmetric like

the 1's in Eq. 10, antisymmetric like the �'s, or lopsided like the �'s? Should they contribute

to all the matrices equally like the 1's, to all the matrices but with non-trivial Clebsch factors

like the �'s or only to D and L like the �'s? It is fairly easy to run through the various

cases and see what kinds of relations among masses and mixings result. As it turns out, one

of the simplest possibilities gives a remarkably good �t to the data. This uniquely simple

choice [3] is the following:

U =

0
B@ � 0 0

0 0 �=3

0 ��=3 1

1
CAMU ; D =

0
B@ � � �0

� 0 � + �=3

�0 ��=3 1

1
CAMD;

N =

0
B@ � 0 0

0 0 ��
0 � 1

1
CAMU ; L =

0
B@ � � �0

� 0 ��
�0 � + � 1

1
CAMD:

(14)
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We have already mentioned that �ts give � �= 1:8 and � �= 0:14. The new parameters �

and �0 both have magnitude of about 0:008. The parameter � is by far the smallest, being

about 8 � 10�6. The only role that � plays in the sector of quarks and charged leptons is

in giving the up quark a mass, for it makes negligible contributions to the down quark and

electron masses as determined from D and L, respectively. In Fig. 2(a) we have illustrated

a higher-order diagram that can contribute to the parameter �. Since it is not excluded that

the up quark is exactly massless, it is possible to set � to zero. In any event, one can see

that � �= m0
u
=m0

t
, which is by orders of magnitude smaller than any other interfamily ratio of

masses in the standard model. It will, however, be of some signi�cance for neutrino masses.

If � vanishes, this model gives only the small-angle MSW solution to the solar neutrino

problem. But even if � is as small as 8�10�6, it allows either the small-angle MSW solution

or bimaximal neutrino mixing to arise in a simple way.

Turning to the parameters � and �0, we see that they appear symmetrically and only

in D and L. Such terms are easily obtained in SO(10) from simple diagrams such as

that shown in Figs. 2(b) and 2(c). The e�ective operators arising from these diagrams

are of the form [16116j][16H16
0
H
] with j = 2; 3, where again the spinors in brackets are

contracted symmetrically into a 10 of SO(10) which is integrated out. Note, however,

that the symmetric contributions � and �0 from the two Higgs contraction [1(16H)5(16
0
H
)]

contributes only to D and L by virtue of their SU(5) structure. Contrast these e�ective

operators for j = 2; 3 with that occurring previously for the term � arising from the diagram

shown in Fig. 1(c).

The three new parameters we have introduced are, as we shall see, su�cient to account

for everything about the �rst family. Before proceeding, however, we must be careful about

complex phases. It is easy to show that if we allow all parameters of the model to be

complex all but two phase angles can be rotated away from the mass matrices U , D, L and

N , provided we now neglect the negligible � contributions to D and L. We will call these

physical phases � and � which appear as follows,

U =

0
B@ � 0 0

0 0 �=3

0 ��=3 1

1
CAMU ; D =

0
B@ 0 � �0ei(�+�)

� 0 � + �ei�=3

�0ei� ��=3 1

1
CAMD;

N =

0
B@
� 0 0

0 0 ��
0 �ei� 1

1
CAMU ; L =

0
B@

0 � �0ei�

� 0 ��
�0ei(�+�) � + �ei� 1

1
CAMD;

(15)

where in these matrices and henceforth �, �, �, �0 and � denote the magnitudes of these

parameters and the phases are written explicitly. The phase � only comes into the �ts of

masses at higher order in the small quantity �=� �= 0:08. Numerically, its e�ect is only a

few percent; moreover, the �ts (especially to mc) prefer a value near zero. Therefore, we

can ignore � and will do so from now on. That leaves only the phase �. Its only signi�cant

e�ect, but a very important one, is to give the CP-violating phase angle �CP .

Instead of using the parameters �, �0 and ei�, it will be somewhat more convenient to

use the parameters tL, tR, and ei�, which are de�ned in terms of them as follows:

tLe
i� � � � ��0ei�

��=3
; (16)
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and

tR �
�
p
�2 + 1

��=3
: (17)

The signi�cance of these parameters is that they are essentially the left-handed and right-

handed Cabbibo angles. This can be seen by taking the forms for D and L given in Eq. (15)

and diagonalizing the 2-3 block. When this is done the 1-2 blocks of these matrices take the

form

D[12] /
 

0 tR
tL 1

!
; L[12] /

 
0 tL
tR 3

!
: (18)

In terms of the �ve dimensionless parameters �, �, tL, tR, and e
i� with � set equal to zero,

we now write down expressions for fourteen observable quantities: seven ratios of quark and

lepton masses, three CKM angles and one phase, and three lepton mixing angles.

m0
b
=m0

�
�= 1� 2

3
�

�2+1
�;

m0
c
=m0

t
�= 1

9
�2 � [1� 2

9
�2];

m0
�
=m0

�
�= � �

�2+1
� [1 + �1��

2���
�(�2+1)

+ 1
18
(t2
L
+ t2

R
)];

m0
s
=m0

b
�= 1

3
� �

�2+1
� [1 + 1

3
�1��

2���=3
�(�2+1)

+ 1
2
(t2
L
+ t2

R
)];

m0
u
=m0

t
= 0;

m0
e
=m0

�
�= 1

9
tLtR � [1� � �

2+2
�(�2+1)

+ �2
�4+9�2=2+3

�2(�2+1)2
� 1

9
(t2
L
+ t2

R
)];

m0
d
=m0

s
�= tLtR � [1� 1

3
� �2+2
�(�2+1)

� (t2
L
+ t2

R
) + (t4

L
+ t2

L
t2
R
+ t4

R
)];

Vcb �= 1
3
� �

2

�2+1
� [1 + 2

3
� 1
�(�2+1)

];

Vus �= tL[1� 1
2
t2
L
� t2

R
+ t4

R
+ 5

2
t2
L
t2
R
+ 3

8
t4
L
� �

3�
p
�2+1

tR

tL
e�i�];

Vub �= 1
3
tL�

1
�2+1

[
p
�2 + 1 tR

tL
e�i�(1 � 1

3
� �

�2+1
)� (1� 2

3
� �

�2+1
)];

U0
�3 � sin ��� �= �p

�2+1
+O(�);

U0
e2

�= cos ���
�
1
3
tR
�
� [1 + �(

tan���
�2+1

� tL

tR
ei�

(1+� tan��� )

�

p
�2+1

)� 1
18
t2
R
� 1

9
t2
L
];

Ue3
�= tan ���Ue2 � [1 + � 2

sin2���

�
tL

tR
ei� 1p

�2+1
� 1

�2+1

�
];

(19)

These expansions have been carried to su�ciently high order in small quantities to be ac-

curate to within 0.2% and are useful in doing the �ts to the data. However, the leading

terms in these expansions have much simpler forms and thus allow one to see more readily
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the relationships among various quantities in this model. We therefore write these simpler

expressions for purposes of discussion.

m0
b
=m0

�
�= 1;

m0
c
=m0

t
�= 1

9
�2;

m0
�
=m0

�
�= � �

�2+1
;

m0
s
=m0

b
�= 1

3
� �

�2+1
;

m0
u
=m0

t
= 0;

m0
e
=m0

�
�= 1

9
tLtR;

m0
d
=m0

s
�= tLtR;

V 0
cb

�= 1
3
� �2

�2+1
;

V 0
us

�= tL;

V 0
ub

�= 1
3
tL�

1
�2+1

(
p
�2 + 1 tR

tL
e�i� � 1);

U0
�3 � sin ��� �= �p

�2+1
+O(�) � 0:7;

U0
e2

�= cos ���
�
1
3
tR
�
;

Ue3
�= sin ���

�
1
3
tR
�
:

(20)

It might at �rst seem surprising that without any information about the Majorana mass

matrix MR of the right-handed neutrinos we are able to write down predictions for the

three neutrino mixing angles. However, if � = 0, as we are assuming at present, then the

Dirac mass matrix of the neutrinos (N) has vanishing �rst row and column, and therefore,

obviously, the same will be true of the mass matrix of the light neutrinos, which is given

by the well-known \see-saw" formula M� = �NTM�1
R
N . This means that the two mixing

elements of the electron neutrino, Ue2 and Ue3, get no contribution from diagonalizing M� ,

but come entirely from diagonalizing L. Since L is a known matrix in our model, these two

mixing elements are predicted. In the case of the mixing of the mu and tau neutrinos, U�3

does receive a contribution from diagonalizing M�. However, as can be seen from the form

of N this is an e�ect of O(�). The contribution to U�3 coming from diagonalizing L, on

the other hand, is of order unity, since it arises from the large parameter �. Thus U�3 is

predicted, although not precisely.

Since we have written fourteen quantities in terms of �ve parameters, there are altogether

nine predictions of the model. Which quantities one takes as \predicted" depends on which
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quantities are used to determine the values of the parameters. We will use the lepton mass

ratios and the angles Vcb and Vus for this purpose as they are the best measured. As one

can see from the third and eighth of Eqs. (20), one can get the value � from the ratio

3V 0
cb
=(m0

�
=m0

�
). One �nds (of course, taking the renormalization e�ects into account as was

done in [2]) that numerically � '
p
3. Substituting this into the expression for m0

�
=m0

�
, one

obtains that � ' 0:14. This is the small parameter of the model that is responsible for the

hierarchy between the second and third families, and is small enough that the expressions in

Eqs. (20) are fairly accurate. One can use me=m� and Vus to determine tL and tR. A careful

�t, described later, gives tL = 0:236 and tR = 0:205. That tL ' tR is easily understood from

Eq. (18) and the well-known Weinberg-Wilczek-Zee-Fritzsch result [8] that the Cabbibo

angle is well acounted for by symmetric mass matrices for the �rst two families; cf. Eq. (1).

The near equality of tL and tR is also apparant from the seventh and ninth relations of Eqs.

(20) and the fact that numerically Vus �=
q
md=ms. The phase factor e

i� will be determined

from the CP-violating phase �CP .

The nine predictions, then, are the following. To begin with, there are the three famous

predictions, (1) m0
b
=m0

�
�= 1, (2) m0

s
�= 1

3
m0

�
, and (3) m0

d
�= 3m0

e
. The �rst is the \good"

prediction of minimalSU(5) uni�cation, and the latter two are the Georgi-Jarlskog relations.

These predictions are manifest from the �rst, third, fourth, sixth, and seventh of Eqs. (20).

It is hardly surprising that the model gives these relations, since we were guided by them

in constructing the model. The fourth prediction is (4) m0
u
=m0

t
= 0. Even if the u quark

is not exactly massless this relation is a very good approximation to reality. If one takes

the favored value of mu � 4 MeV, then, with reasonable assumptions about thresholds in

doing the running up to the GUT scale, one obtains � ' m0
u
=m0

t
� 8 � 10�6. This is far

smaller than any other interfamily ratio of masses. For instance, the comparable ratio for

down quarks is m0
d
=m0

b
�= 10�3, and for leptons is m0

e
=m0

�
�= 3 � 10�4. Like the previous

three relations, mu � 0 is a re
ection of basic group-theoretical aspects of the model. It

comes from the fact, explained above, that the � and �0 entries only appear in D and L.

The remaining �ve predictions are not simple group-theoretical relations like the forego-

ing, but are non-trivial quantitative predictions. They are predictions for (5) mc, (6) Vub,

(7) U�3, (8) Ue2, and (9) Ue3.

The prediction for mc is particularly interesting. We see immediately that, for reasons

having to do with the group-theoretic structure of the model, the ratio m0
c
=m0

t
is much less

than the corresponding ratio m0
s
=m0

b
for the down quarks because it is of higher order in the

small parameter �. This is a highly signi�cant success, because the minimal Yukawa terms

of SO(10) notoriously give these ratios to be equal. Moreover, the success is not merely

a qualitative one. When � and � are �t (using Vcb and m�=m�) and the renormalization

e�ects are later taken into account, it is found that mc comes out within about 5% of the

experimentally preferred value, which is quite remarkable given the various experimental

and theoretical uncertainties. This success is non-trivial, because the reasoning that led to

the forms of the mass matrices did not depend upon the value of mc, and hence it could

have been expected that mc would come out wrong by a large factor.

Another non-trivial quantitative hurdle for the model is the prediction for Vub. The

eighth, ninth, and tenth relations of Eqs. (20) give V 0
ub
�= V 0

us
V 0
cb

1
�2
(
p
�2 + 1 tR

tL
e�i� � 1). If

we use the facts that � '
p
3 and tL ' tR, this gives Vub ' VusVcb(

2
3
e�i� � 1

3
). A careful �t
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gives

Vub = VusVcb(0:558e
�i� � 0:315): (21)

In other words the model predicts that Vub should lie on a certain circle in the complex

plane. As can be seen from Fig. 3, the circle for VudV
�
ub

slices neatly through the middle of

the presently allowed region. Again, this is a very signi�cant success, since the reasoning

that led to the forms in Eq. (15) was not based on the value of Vub.

The prediction for the mixing of �� and �� has already been discussed. It is one of the

key successes of this model that this mixing turns out to be nearly maximal. The fact that

� '
p
3 tells us that the �rst term in the expression for U0

�3 in Eq. (20) corresponds to an

angle near �=3. As we shall see in the next Section, the O(�) corrections easily bring this

down close to the maximal mixing value of �=4.

The prediction of this model for the mixing of �e and �� with � = 0 is quite interesting.

From the sixth relation of Eqs. (20) and the fact that tL ' tR, one sees that
1
3
tR '

q
me=m�.

Thus the model predicts that Ue2
�= cos ���

q
me=m�. The factor of cos ��� is crucial [17]

since without it one would have sin2 2�solar = 4jUe1j2jUe2j2 � 4(me=m�) �= 2 � 10�2, which

is about twice the value needed for the small-angle MSW solution to the solar neutrino

problem. Since atmospheric neutrino data tells us that cos ��� ' 1=
p
2, the model gives just

the correct value for the small-angle MSW solution.

In the future both Vub and sin2 2�solar will be known better and will provide a sharp test

of the model. The theoretical uncertainties in the predictions for Vub and Ue2 are estimated

to be only a few percent.

In discussing the �e��� mixing above, we have assumed that � = 0. If � does not vanish,

but is around 8 � 10�6, corresponding to mu � 4:5 MeV, then it turns out that both the

small-angle MSW solution we just discussed and bimaximal mixing are possible. This will

be discussed in detail in the next Section.

Finally, there is the prediction of �e � �� mixing. One sees from Eq. (20) that there

is a prediction that Ue3
�= tan ���Ue2

�= 0:05. It is interesting that even for the bimaximal

mixing case that will be discussed in the next Section, the numerical value of Ue3 is virtually

una�ected. Thus this prediction is a \robust" one of this model.

V. NEUTRINO MIXING

A. Mixing of �� � ��

In analyzing the predictions of this model for �� � �� mixing, we may make the approx-

imation that � = 0. This means that N has vanishing �rst row and column. Therefore, in

computing M� = �NTM�1
R
N the �rst row and column of M�1

R
are irrelevant. Thus we may

write M�1
R

as

M�1
R

=

0
B@
� � �
� X Y

� Y Z

1
CA ; (22)
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where X, Y , and Z are in general complex. There are consequently �ve real parameters (the

over all phase does not matter) that come into the masses and mixing of �� and �� from

MR. As observed earlier, this does not prevent us from making a qualitative prediction for

the mixing parameter U�3, since the contribution to it from diagonalizing the mass matrix

M� is only of order � and U�3 comes predominantly from diagonalizing the known matrix L.

However, in order to see if more precise predictions can be obtained, we shall look at two

simple special cases:

(I) MR =

0
B@
� 0 0

0 0 Bei��

0 Bei�� 1

1
CA�Re

i
; (23)

and

(II) MR =

0
B@ � 0 0

0 Bei��2 0

0 0 1

1
CA�Re

i
: (24)

In these cases only three parameters inMR, namely �R, B and ei�, contribute to the neutrino

observables of the second and third families, since � has appeared previously and is used as

a natural scaling parameter. In the �rst case,

M I

�
= �

0
B@
0 0 0

0 0 �

0 � 2 +B�1e�i�

1
CA M2

U

B�R

e�i(�+
): (25)

The neutrino mixing matrix U , now known as the MNS mixing matrix [18], is given by

U = Uy
L
U� , where UL is the unitary matrix that diagonalizes LyL, and U� is the unitary

matrix that diagonalizes My
�
M�. For case I, U� is given by

U� =

0
B@ 1 0 0

0 cos ���23 sin ��23
0 � sin ���23 cos ��23

1
CA ; (26)

where tan 2��23 = 2�=K, and K � 2+B�1ei�. The ratio of eigenvalues ofM� givesm�2
=m�3

�=
(�2= jKj2)(1� �2= jKj2 + :::). One can choose cos ��23 to be real, and one can write

sin ��23
�=
q
m�2

=m�3
e�i�

"
1 + (

1

2
� e�2i�)

m�2

=m�3

#
: (27)

where ei� is the phase of K. One readily sees from the form of the charged-lepton mass

matrix L in Eq. (15) that sin �L23 � (UL)23 is given by tan 2�
L

23 = � 2(�+�)

�2�1+2��
= � 2�

�2�1
+O(�).

Since � '
p
3 it is evident that �L23 ' 60�. Using the best �t values of � and � one �nds,

more precisely, that �L23
�= 63�.

Altogether, then, the mixing parameter of �� and �� is given by
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U�3 � sin ���

= � sin �L23 cos �
�

23 + cos �L23 sin �
�

23

�= �0:898(1 �m�3
=m�2

) + 0:441
q
m�3

=m�2
e�i�

(28)

If neutrino masses are hierarchical, and atmospheric neutrino oscillations are �� � �� oscil-

lations, then m�3
' 0:06 eV. And if one further assumes the small-angle MSW solution to

the solar neutrino problem, then m�2
' 0:003 eV. Thus, m�2

=m�3
' 0:05, within a factor

of two or so. Taking it to have the value 0.05, and the phase � to vanish, Eq. (28) gives

U�3
�= �0:756, and sin2 2��� �= 0:984. With the same value of the neutrino mass ratio and

� taken to be �=4, sin2 2��� �= 0:943. We see that there is excellent agreement with the

experimental limits from SuperKamiokande if the complex phase is not too large. But if

� = �=2, with the same mass ratio, sin2 2��� �= 0:77.

The value of m�2
=m�3

= 0:05 corresponds to jKj = 0:63. Since B�1ei� = jKjei� � 2, for

� = 0 this gives B = 0:73, or B� = 0:1. In other words, no very great hierarchy is required

in MR.

Turning now to case II, we have that

M II

�
= �

0
B@
0 0 0

0 �2 �

0 � 1 +B�1e�i�

1
CAM2

U

�R

e�i
: (29)

Consequently, for this case

tan 2��23
�= 2�=K 0; (30)

where K 0 � 1 + B�1ei�. The ratio of eigenvalues of M� gives m�2
=m�3

�=
�2
q
1� jK 0 � 1j2=jK 0j2. If we take, m�2

=m�3
= 0:05, as before, and assume that K 0 is

real, we have that K 0 �= 0:6. This gives ��23
�= 12:3�, ��� �= 50:5�, and sin2 2��� �= 0:96.

Again, there is good agreement with the SuperKamiokande results. Moreover, since this

value of K 0 corresponds to B = �2:5, or B�2 �= �0:05, we see that in this case also no great

hierarchy is needed in MR.

The foregoing discussion is all based on the assumption that the mixing with the �rst

family is small, so that one has the small-angle MSW solution to the solar neutrino problem.

This will certainly be the case if � = 0. As we will now see, if instead � �= 8 � 10�6, as

needed to have mu
�= 4:5 MeV, either the small mixing of �e that we have been considering

or large mixing of �e is possible, depending on the form of MR.

B. Mixing of the First Family

In the previous discussion, we set � = 0 in which case, no matter what the form of MR,

the matrix M� = �NTM�1
R
N has vanishing �rst row and column, and the matrix U� that

diagonalizes My
�
M� has the form of Eq. (26). It is easy to show that the matrix UL which

diagonalizes LyL has the form
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UL
�=
0
B@
cos �L12 � sin �L12 0

sin �L12 cos �L12 0

0 0 1

1
CA
0
B@
1 0 0

0 cos �L23 � sin �L23
0 sin �L23 cos �L23

1
CA ; (31)

where sin �L12
�= 1

3
tR, tR is de�ned in Eq. (17), and �L23 is given after Eq. (27). Putting these

together, one has that the total mixing matrix of the neutrinos, U = U
y
L
U� , is

U =

0
B@ cos �L12 � sin �L12 cos ��� � sin �L12 sin ���
sin �L12 cos �L12 cos ��� cos �L12 sin ���
0 � sin ��� cos ���

1
CA ; (32)

where ��� = �L23 � ��23. This yields the results, already given in Eq. (20), for Ue2 and Ue3.

Now we will consider what happens under what is presumably the more realistic assump-

tion that � �= 8 � 10�6.

With � 6= 0, there are two basic possibilities to consider. One possibility is that MR has

a form in which its 12, 21, 13, and 31 elements all vanish or are negligibly small. If such

is the case, then the previous analysis applies, and the mixing of �e is due entirely to the

matrix L. The only e�ect of the parameter � in the lepton sector is then to give �1 a mass

of about 4� 10�7 eV. The second possibility is that MR does have signi�cant 12, 21 and/or

13, 31 elements. If this is the case then a strikingly di�erent situation can arise [4], namely

\bimaximal" mixing [19], [20].

We will �rst illustrate what happens with a simple example. Consider the following form

for MR:

MR =

0
B@

0 A�3 0

A�3 B�2 0

0 0 1

1
CA�R: (33)

We normalize A and B by powers of � simply for later convenience. The mass matrix of

light neutrinos resulting from this form is

M� = �NTM�1
R
N =

0
B@

�
2

�4
B

A2 0 � �

�2
1
A

0 �2 �

� �

�2

1
A

� 1

1
CAM2

U

�R

: (34)

One sees that the 2-3 block has vanishing determinant, so that a rotation in the 2-3 plane

by an angle ��23
�= � brings M� to the form

M 0
�
�=
0
B@

�
2

�4

B

A2

�

�

1
A
� �

�2

1
A

�

�

1
A

0 0

� �

�2
1
A

0 1

1
CAM2

U

�R

: (35)

This can be put in a more transparent form by a rotation in the 1-3 plane by an angle

��13
�= ��=(�2A). This angle is less than or of order 10�4 and thus negligible, practically

speaking, so

M 00
�
�= �

0
B@

�
2

�4

(B�1)

A2

�

�

1
A

0
�

�

1
A

0 0

0 0 1

1
CAM2

U

�R

: (36)
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It is clear that the 11 element, being higher order in �, is likely to be much smaller than the

12 and 21 elements. The condition for this to be the case is that A=(B�1) > �=�3 �= 2�10�3.

If this very weak condition is satis�ed, then the form of the matrix manifestly corresponds

to the situation in which the �e and �� together form a pseudo-Dirac pair. That in turn

would mean that the mixing of these two neutrinos is very close to maximal.

One sees from Eq. (36) that m�3
= M2

U
=�R, and that the splitting between m�1

and

m�2
is given by �m2

21
�= 2(�3=�5)((B � 1)=A3)(M2

U
=�R)

2. For the vacuum solution to the

solar neutrino problem, one has �m2
21 ' 10�10 eV2, so that �m2

21=m
2
�3
' 3 � 10�8 �=

2(�3=�5)(B � 1)=A3. This gives A(B � 1)1=3 � 0:06. Thus no great hierarchy is required in

MR to get the vacuum oscillation solution. The reason for this is that in this scheme the

smallness of �m2
21 is due to the extreme smallness of the parameter �, which is equal to the

ratio mu=mt.

It is easy to see from what has already been said that the matrix U� needed to diagonalize

My
�
M� is of the form

U�
�=
0
B@ 1 0 0

0 cos ��23 sin ��23
0 � sin ��23 cos ��23

1
CA
0
B@ 1=

p
2 1=

p
2 0

�1=
p
2 1=

p
2 0

0 0 1

1
CA : (37)

where we have neglected the tiny rotation ��13. The matrix UL is already given in Eq. (31),

so that the full neutrino mixing matrix can be written

U �= USMA �
0
B@

1=
p
2 1=

p
2 0

�1=
p
2

p
2 0

0 0 1

1
CA ; (38)

where USMA is given in Eq. (32), and is just the form that results in the small mixing angle

(SMA) MSW case of this model. In other words, the net result of the large mxing of the

�rst family produced by the A entries in Eq. (34) is simply to multiply the (SMA) MSW

form of U on the right by a rotation of �=4 in the 1-2 plane. Consequently, the predictions

for U�3 and Ue3 are essentially una�ected. However, Ue2 becomes 1=
p
2 instead of the value

given in Eq. (20).

The interesting lesson is that \bimaximal mixing" is easy to achieve if the large mixing

of �� and �� comes from the charged lepton sector, i.e., from diagonalizing L, while the large

mixing of �e comes from diagonalizing M� .

The simple form given in Eq. (33) gives ��23
�= � �= 8�, and thus ��� = �L23 � ��23

�= 55�,

corresponding to sin2 2��� = 0:88. Somewhat larger values of sin2 2��� can arise from a more

general form MR. Consider, for example,

MR =

0
B@

0 A�3 C�2

A�3 B�2 0

C�2 0 1

1
CA�R: (39)

Then

M� = �
0
B@

�
2

�4
B �

�
BC �

�
(BC �A)

�

�
BC �2A2 �A(A+ C)

�

�
(BC �A) �A(A+ C) (A+ C)2

1
CA (A2 +BC2)�1M

2
U

�R

(40)
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Here, as in Eq. (34), the 2-3 block has vanishing determinant. The crucial di�erence is that

the diagonalization of this matrix involves a rotation in the 2-3 plane by an angle ��23
�= � A

A+C
.

With C = �1
2
A, for instance, ��� comes out very close to 45�. Otherwise, this case is quite

similar to that of Eq. (33).

VI. DETAILS OF A SPECIFIC MODEL

In the previous Sections we have presented the construction of our SO(10) minimal Higgs

model in the framework of e�ective SO(10) and SU(5) operators. We now show that one

can construct a technically-natural realization of this scheme by introducing sets of Higgs

and matter super�elds with a well-de�ned family symmetry. We �rst address the Higgs

sector.

A. Higgs Sector with U(1)� Z2 � Z2 Family Symmetry

The doublet-triplet splitting problem in SU(5), and therefore SO(10), arises because

the colored Higgs in the 5 � 5 pairs of each 10H must be made superheavy at the GUT

scale, while just one pair of Higgs doublets should remain massless there and be free to

develop VEV's at the electroweak scale. This problem has been addressed and solved in [5]

by the introduction of just one 45 adjoint Higgs �eld with its VEV pointing in the B � L

direction, together with two pairs of 16+ 16 spinor Higgs �elds, two 10 Higgs in the vector

representation plus several Higgs singlets. We shall brie
y summarize the solution, but �rst

we note that it is necessary to introduce several more Higgs �elds in the vector and singlet

representations in order to generate the Yukawa structure for the fermion mass matrices

presented earlier.

The authors of [5] found that the Higgs superpotential required to solve the doublet-

triplet splitting problem could be neatly obtained from their list of Higgs �elds by introducing

a global family symmetry group of the type U(1) � Z2 � Z2, which can arise in a natural

fashion from string theory. With this in mind, we now list in Table I all the Higgs �elds to

be considered together with their family charge assignments.
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Higgs Fields Needed to Solve the 2-3 Problem:

45B�L: A(0)
+�

16: C(3
2
)�+; C 0(3

2
� p)�+

16: �C(�3
2
)++; �C 0(�3

2
� p)�+

10: T1(1)
++; T2(�1)+�

1: X(0)++; P (p)+�; Z1(p)
++; Z2(p)

++

Additional Higgs Fields for the Mass Matrices:

10: T0(1 + p)+�; T 0
o
(1 + 2p)+�,

�To(�3 + p)�+; �T 0
o
(�1 � 3p)�+

1: Y (2)�+; Y 0(2)++; S(2� 2p)��; S 0(2� 3p)��,

VM (4 + 2p)++

Table I. Higgs super�elds in the proposed model.

As noted in the table, in order to complete the construction of the Dirac mass matrices,

four more vector Higgs �elds and four additional Higgs singlets are needed, while one Higgs

singlet is introduced to generate the right-handed Majorana neutrino mass matrix.

It is then possible to write down explicitly the full Higgs superpotential from the Higgs

SO(10) and family assignments, where we have written it as the sum of �ve terms:

WHiggs = WA +WCA +W2=3 +WHD
+WR

WA = trA4=M +MAtrA
2

WCA = X(CC)2=M2
C
+ F (X)

+C
0
(PA=M1 + Z1)C + C(PA=M2 + Z2)C

0

W2=3 = T1AT2 + Y 0T 2
2

WHD
= T1CCY

0=M + T 0CC
0 + T 0(T0S + T 0

0S
0)

WR = T 0T
0
0VM

(41)

The Higgs singlets are all assumed to develop VEV's at the GUT scale. We can then

determine the fate of the other Higgs �elds from the F-
at and D-
at conditions. In par-

ticular, WA �xes hAi through the FA = 0 condition where one solution is hAi / B � L, the

Dimopoulos-Wilczek solution [12]. WCA gives a GUT-scale VEV to C and C by the FX = 0

condition and also couples the adjoint A to the spinors C; C; C 0 and C
0
without destabiliz-

ing the Dimopoulos-Wilczek solution or giving Goldstone modes, as shown in [5]. W2=3 gives

the doublet-triplet splitting by the Dimopoulos-Wilczek mechanism [12], [5]. WHD
mixes

the (1; 2;�1=2) doublet in T1 with those in C 0 (by F
C
= 0), and in T0 and T 0

0 (by FT0
= 0).

B. Yukawa Sector

We now turn to the Yukawa sector and specify the matter �elds and their U(1)�Z2�Z2

charge assignments which will complete the realization of the speci�c model in question.
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For this purpose, we require three spinor �elds 16i, one for each light family, two vector-like

pairs of 16 � 16 spinors which can get superheavy, a pair of superheavy 10 �elds in the

vector representation, and three pairs of superheavy 1� 1c fermion singlets. The complete

listing is given in Table II.

161(�1
2
� 2p)+� 162(�1

2
+ p)++ 163(�1

2
)++

16(�1
2
� p)�+ 160(�1

2
)�+

16(1
2
)+� 16

0
(�3

2
+ 2p)+�

101(�1� p)�+ 102(�1 + p)++

11(2 + 2p)+� 12(2� p)++ 13(2)
++

1c1(�2� 2p)+� 1c2(�2)+� 1c3(�2� p)++

Table II. Matter super�elds in the proposed model.

In terms of these fermion �elds and the Higgs �elds previously introduced, one can then

spell out all the terms in the Yukawa superpotential which follow from their SO(10) and

U(1) � Z2 � Z2 assignments:

WY ukawa = 163 � 163 � T1 + 162 � 16 � T1 + 160 � 160 � T1
+163 � 161 � T 0

0 + 162 � 161 � T0 + 163 � 16 �A
+161 � 160 � Y 0 + 16 � 16 � P + 160 � 160 � S
+163 � 102 � C 0 + 162 � 101 � C + 101 � 102 � Y
+163 � 13 � C + 162 � 12 � C + 161 � 11 � C
+13 � 1c3 � Z + 12 � 1c2 � P + 11 � 1c1 �X
+1c3 � 1c3 � VM + 1c1 � 1c2 � VM

(42)

where the coupling parameters have been suppressed. To obtain the GUT scale structure

for the fermion mass matrix elements, all but the three chiral spinor �elds in the �rst line of

Table II. will be integrated out to yield Froggatt-Nielsen diagrams [21] of the type pictured

earlier. Note that the right-handed Majorana matrix elements will all be generated through

the Majorana couplings of the VM Higgs �eld with conjugate singlet fermions given in the

last two terms of Eq. (42).

In order to present a clearer description of how the GUT scale mass matrices are deter-

mined from the Yukawa and Higgs superpotentials, we shall illustrate the procedure for the

up quark mass matrix U . The three massless color-triplet quark states each with charge 2=3

are obtained as linear combinations of all such color and charge states within the fermion

supermultiplets given in (41). In particular, the basis for the left-handed states uL and

left-handed conjugate states uc
L
can be ordered as follows:

BuL =
n
j3; 2; 1

6
>10(161); j3; 2; 16 >10(162); j3; 2; 16 >10(163); j3; 2; 16 >10(16) ;

j3; 2; 1
6
>10(160); j3; 1; 23 >10(16); j3; 1; 23 >10(16

0

)

o (43)

Buc
L
=
n
j�3; 1;�2

3
>10(161); j�3; 1;�2

3
>10(162); j�3; 1;�2

3
>10(163); j�3; 1;�2

3
>10(16) ;

j�3; 1;�2
3
>10(160); j�3; 2;�1

6
>10(16); j�3; 2;�1

6
>

10(16
0

)

o (44)
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where the states are labeled by their representations and hypercharge according to

jSU(3)c; SU(2)L; Y iSU(5)(SO(10)).

We then form the Yukawa contribution ucT
L
C�1DuuL by using the above bases and the

superpotentials to obtain the matrix

Du =

0
BBBBBBBBBB@

0 0 0 0 0 0 y0

0 0 0 t2 0 0 0

0 0 t3 0 0 a 0

0 t2 0 0 0 p 0

0 0 0 0 t0 0 s00

0 0 a p 0 0 0

y0 0 0 0 s00 0 0

1
CCCCCCCCCCA

where we have introduced the following shorthand notation:

t3 = �163163T1hT1i; t2 = �16216T1hT1i; t0 = �160160T1
hT1i;

a = �16316AhAi; p = �1616P hP i;
s00 = �

16016
0

S
hSi; y0 = �

16116
0

Y 0
hY 0i

: (45)

We can then determine from this matrix the three pairs of zero-mass eigenstates at the GUT

scale where the electroweak VEV of T1 vanishes:

ju1Li =
h
j10(161)i � y

0

s00
j10(160)i

i
=
q
1 + y02=s002

ju2Li = j10(162)i
ju3Li =

h
j10(163)i � a

p
j10(16)i

i
=
q
1 + a2=p2

juc1Li =
h
j10(161)i � y

0

s00
j10(160)i

i
=
q
1 + y02=s002

juc2Li = j10(162)i
juc3Li =

h
j10(163)i � a

p
j10(16)i

i
=
q
1 + a2=p2

(46)

and where the states are now simply labeled by their SU(5) and SO(10) representations.

Finally, the Dirac matrix U for the three light quark states u; c; t is obtained by

bracketing the electroweak contributions by the appropriate uc
iL

state on the left and the

ujL state on the right. The result obtained for U has exactly the form found earlier in Eq.

(15) from the previous e�ective operator approach, with the identi�cations:

MU = (t3)5(10)
�MU = j3(aq=p)(t2)5(10)j
�MU = (y0=s00)2(t0)5(10)

(47)

Here the subscript on aq signi�es a factor of 1=3 arising from the B�L VEV of the A in the

adjoint representation, while the subscripts on the t terms specify the appropriate doublet

VEV in the 10 for T1. We have neglected the state normalization factors in (47) but will

later argue that they can all be taken to be approximately unity.

The Dirac matrices, D; N; L are constructed in a similar fashion. In the case of D

and L, the bases corresponding to Eqs. (43) and (44) are enlarged by two states lying in

the 101 and 102 representations of SO(10). For N , on the other hand, in addition to the
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two above states, one must add the singlet fermion contributions from the representations

1k; k = 1; 2; 3 for B�L and 1c
k
; k = 1; 2; 3 for B�c

L
. We list the zero-mass state vectors for D,

N and L in analogy to Eqs. (46):

jd1Li =
h
j10(161)i � y

0

s00
j10(160)i

i
=
q
1 + y02=s002

jd2Li = j10(162)i
jd3Li =

h
j10(163)i � a

p
j10(16)i

i
=
q
1 + a2=p2

jdc1Li =
h
j�5(161)i � y

0

s00
j�5(160)i

i
=
q
1 + y02=s002

jdc2Li =
h
j�5(162)i � c

y
j�5(102)i

i
=
q
1 + c2=y2

jdc3Li =
h
j�5(163)i � a

p
j�5(16)i

i
=
q
1 + a2=p2

(48)

jn1Li =
h
j�5(161)i � y0

s00
j�5(160)i

i
=
q
1 + y02=s002

jn2Li =
h
j�5(162)i � c

y
j�5(102)i

i
=
q
1 + c2=y2

jn3Li =
h
j�5(163)i � a

p
j�5(16)i

i
=
q
1 + a2=p2

jnc1Li =
h
j1(161)i � y

0

s00
j1(160)i � �c1

x
j1c1i

i
=
q
1 + y02=s002 + �c21=x

2

jnc2Li =
h
j1(162)i � �c2

p22
j1c2i

i
=
q
1 + �c22=p

2
22

jnc3Li =
h
j1(163)i � a

p
j1(16)i � �c3

z
j1c3i

i
=
q
1 + a2=p2 + �c23=z

2

(49)

j`1Li =
h
j�5(161)i � y

0

s00
j�5(160)i

i
=
q
1 + y02=s002

j`2Li =
h
j�5(162)i � c

y
j�5(102)i

i
=
q
1 + c2=y2

j`3Li =
h
j�5(163)i � a

p
j�5(16)i

i
=
q
1 + a2=p2

j`c1Li =
h
j10(161)i � y0

s00
j10(160)i

i
=
q
1 + y02=s002

j`c2Li = j10(162)i
j`c3Li =

h
j10(163)i � a

p
j10(16)i

i
=
q
1 + a2=p2

(50)

In the above we have introduced, in analogy with Eqs. (45), the additional shorthand

notation:

c = �162101ChCi; �ci = �16i1i �Ch �Ci; i = 1; 2; 3;

x = �111c1XhXi; y = �101102Y hY i;
z = �131c3ZhZi; p22 = �121c2P hP i

(51)

The Dirac matricesD; N and L are found by forming matrix elements of the electroweak

symmetry breaking VEV's with the appropriate basis vectors. Again these matrices have

exactly the structures given in Eqs. (15), provided the state normalization factors are

approximated by unity, i.e., we assume that the zero-mass states have their large components

in the chiral representations 161; 162 and 163 and that all the other components are small.

We shall return to this point in the next Section. In the meantimewe make the identi�cations
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MD = (t3)�5(10)
�MD = j3(aq=p)(t2)�5(10)j
�MD = �(c=y)(c0)�5(16)
�MD = t0�t0=s

�0ei�MD = t00�t0=s
0

(52)

in terms of the notation given in Eqs. (45) and (51) and the following:

t0 = �161162T0; t00 = �161163T 0

0

�t0 = �CC0 �T0
hCihC 0i; c0 = �163102C0hC 0i;

s = �T0 �T0ShSi; s0 = �T 0

0
�T0S

0hS0i
(53)

The phase � appearing in the �0 term can be understood to arise from a phase in the VEV

for S0. The structures of the Dirac matrix elements given in Eqs. (15), (47) and (52) can

be understood in terms of the simple Froggatt-Nielsen diagrams of Fig. 1 and 2, with the

Higgs �elds labeled as in Table I.

Turning to the right-handed Majorana mass matrix, we use the zero mass left-handed

conjugate states that were obtained implicitly above for the Dirac matrixN to form the basis

for MR. The right-handed Majorana matrix is then obtained by bracketing the Majorana

Higgs VM with the appropriate zero mass conjugate neutrino states in (49). We obtain

MR =

0
B@ 0 A�3 0

A�3 0 0

0 0 1

1
CA�R (54)

where

M3 = �R = �1c
3
1c
3
VM
hVM i(�c3=z)2;

M2 = �M1 = A�3�R = �1c
1
1c
2
VM
hVM i(�c1=x)(�c2=p22) (55)

The lighter two right-handed Majorana masses are degenerate and have opposite CP-parity.

Note that the whole right-handed Majorana matrix has been generated in this simple model

by one Majorana VEV coupling superheavy conjugate fermion singlets as shown in Fig. 4.

We conclude this Section with a summary of the GUT scale predictions derived from the

Dirac and Majorana mass matrices with the particular parameters appropriate for the model

in question. For convenience we give the whole set equations which are the counterpart of

Eqs. (19).
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m0
t
=m0

b
�= (�2 + 1)�1=2MU=MD; m0

u
=m0

t
�= �;

m0
c
=m0

t
�= 1

9
�2 � [1� 2

9
�2]; m0

b
=m0

�
�= 1� 2

3
�

�2+1
�;

m0
s
=m0

b
�= 1

3
� �

�2+1
� [1 + 1

3
�1��

2���=3
�(�2+1)

+ 1
2
(t2
L
+ t2

R
)];

m0
d
=m0

s
�= tLtR � [1� 1

3
� �

2+2
�(�2+1)

� (t2
L
+ t2

R
)

+(t4
L
+ t2

L
t2
R
+ t4

R
)];

m0
�
=m0

�
�= � �

�2+1
� [1 + �1��

2���
�(�2+1)

+ 1
18
(t2
L
+ t2

R
)];

m0
e
=m0

�
�= 1

9
tLtR � [1� � �

2+2
�(�2+1)

+ �2 �
4+9�2=2+3

�2(�2+1)2

�1
9
(t2
L
+ t2

R
)];

V 0
cb
�= 1

3
� �

2

�2+1
� [1 + 2

3
� 1
�(�2+1)

];

V 0
us
�= tL[1� 1

2
t2
L
� t2

R
+ t4

R
+ 5

2
t2
L
t2
R
+ 3

8
t4
L

� �

3�
p
�2+1

tR

tL
e�i�];

V 0
ub
�= 1

3
tL�

1
�2+1

[
p
�2 + 1 tR

tL
e�i�(1 � 1

3
� �

�2+1
)

�(1� 2
3
� �

�2+1
)];

m0
2=m

0
3
�=
�

�

A�
p
1+�2

� h
1 + �

A�3
p
1+�2

i
;

m0
1=m

0
3
�=
�

�

A�

p
1+�2

� h
1� �

2A�3
p
1+�2

i
;

U0
�3
�= � 1p

�2+1
(� � � �2

�2+1
);

U0
e2
�= � 1p

2

h
1 � �

3�
tLe

i�

+ 1

3
p
�2+1

(1 + ��)tR
i
;

U0
e3
�= 1

3
p
�2+1

(� � �)tR � �

A�2

(56)

To the quark equations we have added the ratio m0
t
=m0

b
which involves the ratio of h5(T1)i

to h5(T1)i, i.e., MU=MD, as well as giving the leptonic mass ratios and mixings speci�c to

the model in question.

C. Numerical Evaluation of Matrix Parameters

We have elaborated above how the simple explicit model proposed gives precisely the

structure for the Dirac mass matrices that was obtained from the e�ective operator approach.

We now show that the entries are also numerically in the range to �t the quark and lepton

mass and mixing data.

In order to compare the GUT scale predictions in Eq. (56) with the low scale data, the

GUT scale values are �rst evolved from �G = 2� 1016 GeV down to the SUSY scale which

is taken to be �SUSY = mt(mt) = 165 GeV by use of the 2-loop MSSM beta functions. For

this purpose, the mass ratios at the two scales are related by the �i=j running factors, while

the quark mixing elements are scaled by the �ij factor according to

�
mi

mj

�
SUSY

=

�
m

0

i

m
0

j

�
=�i=j;

(Vij)SUSY = V 0
ij
=�ij; (ij) = (ub); (cb); (td); (ts)

(57)
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The remaining evolutions to the bottom and charm quark or tau lepton running mass scales,

or to the 1 GeV scale in the case of the light quarks and leptons, is carried out with the

3-loop QCD and 1-loop QED renormalization group equations. Here the running factors are

�i with the mass ratios scaled according to

mi(mi) = (mi)SUSY=�i(mt) (58)

or similarly, with the running mass scale mi replaced by 1 GeV. With tan � = 5 used

for the numerical evaluations for reasons that will become apparently shortly, �s(MZ) =

0:118; �(MZ) = 1=127:9 and sin2 �W = 0:2315, the running factors are given by

�u=t = �c=t = 0:6927; �d=b = �s=b = 0:8844

��=� = 0:9988; �b=t = 0:5094

�ub = �cb = �td = �ts = 0:8853

�u(mt) = 0:4235; �c(mt) = 0:4733; �t(mt) = 1:0000

�d(mt) = 0:4262; �s(mt) = 0:4262; �t(mt) = 0:6540

�e(mt) = 0:9816; ��(mt) = 0:4816; �� (mt) = 0:9836

(59)

Finally, �nite corrections must be applied to ms, mb and the evolved quark mixing matrix el-

ements which arise from gluino and chargino loops. The correction factors are conventionally

written as (1 + �s); (1 + �b) and (1 + �cb) where we have used

�s = �0:20; �b = �0:15; �cb = �0:05 (60)

as explained below.

Using the quantities [22] mt(mt) = 165 GeV; m� = 1:777 GeV; m� = 105:7 MeV; me =

0:511 MeV; mu = 4:5 MeV; Vus = 0:220; Vcb = 0:0395, and �CP = 64o to determine the

input parameters, one obtains for them MU ' 113 GeV; MD ' 1 GeV; � = 1:780; � =

0:145; tL = 0:236; tR = 0:205; � = 34o (corresponding to � = 0:0086; �0 = 0:0079; � = 54o),

and � = 8� 10�6. With these inputs the remaining quark masses and mixings are obtained,

to be compared with the experimental values [22] in parentheses:

mc(mc) = 1:23 GeV (1:27 � 0:1 GeV)

mb(mb) = 4:25 GeV (4:26 � 0:11 GeV)

ms(1 GeV) = 148 MeV (175 � 50 MeV)

md(1 GeV) = 7:9 MeV (8:9� 2:6 MeV)

jVub=Vcbj = 0:080 (0:090 � 0:008)

(61)

where the �nite SUSY loop corrections for mb; ms and Vcb have been rescaled to give

mb(mb) ' 4:25 GeV for tan � = 5: Had we chosen �CP = 70o as input, on the other hand,

we would �nd instead jVub=Vcbj = 0:085. With the numerical values in (61) we �nd for ��; ��

and the �; � and 
 angles of the unitarity triangle pictured in Fig. 3

�� = 0:143; �� = 0:305; � = 96o; � = 20o; 
 = 64o (62)

The upper vertex of the triangle appears to be circled precisely in the allowed experimental

region.
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Additional predictions follow for the neutrino sector. The e�ective light neutrino mass

matrix of Eq. (34) or (36) with B = 0 leads to bimaximal mixing with a large angle solution

for atmospheric neutrino oscillations [6] and the \just-so" vacuum solution [19] involving

two pseudo-Dirac neutrinos, if we set �R = 2:4� 1014 GeV and A = 0:05. We then �nd

m3 = 54:3 meV; m2 = 59:6 �eV; m1 = 56:5 �eV

M3 = 2:4� 1014 GeV; M2 = M1 = 3:66� 1010 GeV

Ue2 = 0:733; Ue3 = 0:047; U�3 = �0:818; �0
CP

= �0:2o

�m2
23 = 3:0 � 10�3 eV2; sin2 2�atm = 4jU�3j2jU�3j2 = 0:89

�m2
12 = 3:6 � 10�10 eV2; sin2 2�solar = 4jUe1j2jUe2j2 = 0:99

�m2
13 = 3:0 � 10�3 eV2; sin2 2�reac = 4jUe3j2(1� jUe3j)2 = 0:009

(63)

The e�ective scale of the right-handed Majorana mass contribution occurs two orders of

magnitude lower than the SUSY GUT scale of �G = 1:2 � 1016 GeV. The e�ective two-

component reactor mixing angle given above should be observable at a future neutrino

factory, whereas the present limit from the CHOOZ experiment [23] is approximately 0.1 for

the above �m2
23. In principle, the parameter A appearing in MR can also be complex, but

we �nd that in no case does the leptonic CP-violating phase, �0
CP

exceed 10o in magnitude.

Hence the model predicts leptonic CP-violation will be unobservable.

The vacuum solar solution depends critically on the appearance of the parameter � in

the matrix N , corresponding to the non-zero � entry in U which gives the up quark a mass

at the GUT scale. Should we set � = 0, only the small-angle MSW solution [7] would be

obtained for the solar neutrino oscillations. The large angle MSW solution is disfavored by

the larger hierarchy, i.e., very small A value, required in MR.

Finally we address the issue that the state normalization factors were all replaced by

unity in Eqs. (47) and (52) for the various matrix parameters. This is a good approxi-

mation provided the three fermion spinor states j161i; j162i; j163i provide the dominant

contributions to the zero-mass quark and lepton states at the GUT scale. In particular, the

following ratios must be much less than unity:

(a=p)2; (y0=s00)2; (c=y)2; (�c1=x)
2; (�c2=p22)

2; (�c3=z)
2 � 1 (64)

Let us assume for simplicity that the electroweak couplings of hT1i in t3; t2 and t0 in Eq.
(45) and of hC 0i in c0 of (53) are identical. Then with � = j3(aq=p)j = ja`=pj = 0:14, we �nd

the condition (a=p)2 ' 0:02� 1 holds. To obtain an up quark mass mu(1GeV ) ' 4:5 MeV,

we need � �= (y0=s00)2 ' 8� 10�6 at the GUT scale, which easily satis�es (64).

Requiring that (c=y)2 � 1 and with the result from Eqs. (52) that

� '
��� c
y

h�5(C0)i
h�5(T1)i

��� ' 1:8 (65)

leads us to the results that

tan 
 � h�5(C0)i
h�5(T1)i � �

tan� ' p
�2 + 1m0

t
(cos
)=m0

b
� m0

t
=m0

b

(66)
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in terms of the T1�C 0 mixing angle, 
, in Eq. (11). With c=y �= 0:1, for example, tan 
 ' 18

which implies tan� ' 6, a very reasonable mid-range value allowed by experiment. For this

reason, we have chosen to illustrate the numerical results above with tan� = 5.

The remaining ratios in Eq. (64) can also be satis�ed. For comparable �ci's, A�
3 �

1:4�10�4 obtained from Eq. (55) requires that hZi=
q
hXihP i � 0:01. This ratio is consistent

with the VEV's needed in the Higgs superpotential of Eq. (41) in order to solve the doublet-

triplet splitting problem.

Turning now to the parameters � and �0, we note that the near equality of their mag-

nitudes leads to the ratio �=j�0j �= s=js0j ' 1. Moreover, if we assume y � y0, we obtain

the estimate � � cy0=(ys) tan 
 � 5 � 10�3 with the numbers obtained earlier, whereas the

actual value needed is � ' 0:008.

Thus we have found that not only are the desired forms of the Dirac (and Majorana)

matrices generated by the model of this Section, but that the numerical values required for

the matrix parameters are also quite reasonable.

VII. SUMMARY

Both the largeness of the atmospheric neutrino mixing U�3 and the smallness of the quark

mixing Vcb can be elegantly accounted for by the idea that the charged lepton mass matrix L

is highly asymmetric or \lopsided" and that the down-quark mass matrix D is related to the

transpose of L by an SU(5) symmetry. This idea was discovered independently by several

groups and has since been used in numerous models of fermion masses. Remarkably, exactly

such mass matrices emerged in our work from quite other considerations than neutrino

masses and mixings, speci�cally from an attempt to construct the simplest possible realistic

SO(10) model.

Advances have been made in recent years in simplifying the Higgs structure of SUSY

SO(10) models. If one assumes the minimal set of Higgs �elds that can break SO(10) down

to the standard model group, the possibilities for Yukawa terms for the quarks and leptons

become signi�cantly restricted. It turns out that there is what seems to be a uniquely simple

set of SO(10) Yukawa terms that gives realistic masses and mixings. This set consists of

only six e�ective Yukawa terms (�ve if mu = 0) which satisfactorily �ts all nine masses

of the quarks and charged leptons as well as the four CKM parameters. In addition, large

����� mixing emerges automatically. Moreover, in this uniquely simple model, the simplest

possibilities for the Majorana mass matrix MR of the right-handed neutrinos lead either to

small angle MSW values for the solar neutrino mixing or to vacuum oscillation values. In this

paper we have studied in detail the consequences of di�erent forms of MR for the neutrino

mixing angles and mass ratios.

In the published literature no more predictive and economical a model for quark and

lepton masses than the one discussed here exists that is also consistent with present knowl-

edge. It is striking that in this model a single term and a single parameter (which we call �)

accounts for no less than four puzzling aspects of the light fermion spectrum: the largeness

of U�3, the smallness of Vcb, the smallness of mc=mt compared to ms=mb, and the Georgi-

Jarlskog factor of three betweenm� and ms at the GUT scale. It should be emphasized that,

while many satisfactory neutrino mixing ideas and also many interesting ideas for explaining
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the pattern of quark and charged lepton masses have been proposed, very few models exist

which not only give a satisfactory account of neutrino phenomenology but are at the same

time highly predictive.

We have shown that the model de�ned by the existence of these �ve (or six) e�ective

Yukawa terms can be realized in a complete and speci�c renormalizable SUSY SO(10)

model that is technically natural. We have presented the details of such a model, including

all the Higgs and quark and lepton super�elds, the abelian 
avor symmetries, and the

transformation properties of the �elds under these symmetries. Finally, we have done a

quantitative comparison of the predictions of the model to experiment.

In the future this model will be rigorously testable in several ways. The most important

are (1) a relation between the real and imaginary parts of Vub including a precise test of the

angles of the unitarity triangle; (2) a prediction for Ue2, which in the small angle MSW case

gives a sharp relation between the solar and atmospheric angles; and (3) a de�nite prediction

for Ue3.
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FIG. 1. Diagrams that generate the elements in the quark and lepton mass matrices shown

in Eqs. (10) with the Higgs labeling corresponding to that appearing in Table I of Section VI.

(a) The 33 elements denoted \1". (b) The 23 and 32 elements denoted \�". Note that because

of the appearance of the VEV of the adjoint Higgs �eld 45H � A, they are proportional to the

SO(10) generator B�L. (c) The asymmetric elements denoted \�" arise from this diagram. That

they do not contribute to the up quark masses, and contribute asymmetrically to the down quark

and charged lepton mass matrices are consequences of the fact that the SO(10) 10's, i.e., 101 and

102, contain 5 but not 10 of SU(5).
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FIG. 2. Diagrams that generate the masses of the �rst family of quarks and leptons. See Eq.

(14). (a) The 11 element called \�". (b) The 12 and 21 elements called \�". Because the 10H
couples to the symmetric product of 161162, � appears symmetrically in the mass matrices. (c)

The 13 and 31 elements called \�0", which also appear symmetrically.
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FIG. 3. The unitarity triangle for VudV
�
ub

+ VcdV
�
cb
+ VtdV

�
tb

= 0 is displayed along with the

experimental constraints on VudV
�
ub
, which is the upper vertex in the triangle. The constraints

following from jVubj, B-mixing and � extractions from experimental data are shown in the lightly

shaded regions. The experimentally allowed region is indicated by the darkly shaded overlap. The

model predicts that VudV
�
ub

will lie on the dashed circle; cf. Eq. (21). The particular point on this

circle used to draw the triangle shown is obtained from the numbers given in Section VI; cf. Eq.

(62).
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FIG. 4. Diagrams that generate the 33, 12, and 21 elements of the Majorana mass matrix MR

of the superheavy right-handed neutrinos.
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